CRYSTAL STRUCTURES OF CYCLOSPORIN DERIVATIVES: *O*-ACETYL-(4*R*)-4-(*E*-2-BUTYL)-4,*N*-DIMETHYL-1-THREONYL-CYCLOSPORIN A AND *O*-ACETYL-(4*R*)-4-[*E*-2-(4-BROMOBUTYL)]-4,*N*-DIMETHYL-1-THREONYL-CYCLOSPORIN A

Bohumil KRATOCHVÍL^{*a*1}, Alexandr JEGOROV^{*b*,*}, Svetlana PAKHOMOVA^{*a*2}, Michal HUŠÁK^{*a*3}, Petr BULEJ^{*c*1}, Ladislav CVAK^{*c*2}, Petr SEDMERA^{*d*1} and Vladimír HAVLÍČEK^{*d*2}

- ^a Department of Solid State Chemistry, Prague Institute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic; e-mail: ¹ kratochb@vscht.cz, ² pachomos@vscht.cz, ³ husakm@vscht.cz
- ^b Galena Co., Research Unit, Branišovská 31, 370 05 České Budějovice, Czech Republic; e-mail: husakm@marvin.jcu.cz
- ^c Galena Co., R. D., 747 70 Opava-Komárov, Czech Republic; e-mail: ¹ pbulej@ivax.com, ² ladislav_cvak@ivax.com
- ^d Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic; e-mail: ¹ sedmera@biomed.cas.cz, ² vlhavlic@biomed.cas.cz

Received June 19, 1998 Accepted September 2, 1998

The structures of *O*-acetyl-(4*R*)-4-(*E*-2-butyl)-4,*N*-dimethyl-L-threonyl-cyclosporin A (1) and *O*-acetyl-(4*R*)-4-[*E*-2-(4-bromobutyl)]-4,*N*-dimethyl-L-threonyl-cyclosporin A (2) were determined by X-ray diffraction methods and compared with the structure of related cyclosporins. In contrast to expectation, neither the acetylation nor the subsequent bromination of 1 affects the conformation and packing of cyclosporins in the solid state. Both compounds are isomorphous and crystallize in the orthorhombic space group $P2_12_12_1$ with a = 12.936(2) Å, b = 15.590(2) Å, c = 36.280(3) Å, and a = 12.916(3) Å, b = 15.675(4) Å, c = 36.715(7) Å, for 1 and 2, respectively.

Key words: Cyclic peptides; Cyclosporins; Crystal structure determination; X-Ray diffraction; NMR spectroscopy; Immunosupressants.

Cyclosporins are natural undecapeptides derived from cyclosporin A (CsA, cyclo(-MeBmt¹-Abu²-Sar³-MeLeu⁴-Val⁵-MeLeu⁶-Ala⁷-D-Ala⁸-MeLeu⁹-MeLeu¹⁰-MeVal¹¹-), where MeBmt = (4R)-4-[(E)-2-butenyl]-4,N-dimethyl-L-threonine, Fig. 1). CsA is biologically active substance which is used as an immunosupressant for organ transplantations and treatment of various autoimmune diseases (*Consupren*®, Galena).

So far, three crystal structures of solvated cyclosporin A have been reported including: CsA monohydrate^{1,2} (**3**, $P2_12_12_1$), CsA dihydrate³ (**4**, $P4_1$) and CsA dimethyl isosorbide clathrate⁴ (5, $P2_1$). The conformation of CsA in nonpolar solvents^{5,6} is very similar to that found in various single crystal forms^{3,7}. In more polar solvents, such as DMSO, the number of conformations is increasing⁶, which is probably caused by the breaking of the intramolecular H-bonds and formation of H-bonds to the solvent molecules. However, the conformation of CsA found in the crystalline state also predominates in polar solvents. X-Ray structural studies demonstrated^{8,9} that CsA after complexation with its transport protein - cyclophilin adopts the complete different all-trans conformation with the only intramolecular hydrogen bonds between the MeBmt¹ (OH) side chain and MeLeu⁴ (CO). Another new backbone form of CsA in complex with lithium chloride in THF solution has been reported recently¹⁰ in which the configuration of the peptide bond between MeLeu⁹ and MeLeu¹⁰ has changed from *cis* to trans similarly as in the complex with cyclophilin.

Both [O-acetyl-MeBmt¹]CsA (1) and [O-acetyl- ω -bromo-MeBmt¹]CsA (2) are useful intermediates in the synthesis of human metabolite¹¹ AM1

Fig. 1

Schematic representation of conformations and hydrogen bonds common for 1–4, 6. 1: $\mathbb{R}^1 = CH_3COO-$, $\mathbb{R}^2 = CH_3$; 2: $\mathbb{R}^1 = CH_3COO-$, $\mathbb{R}^2 = -CH_2Br$; 3–4: $\mathbb{R}^1 = -OH$, $\mathbb{R}^2 = -CH_3$; 6: $\mathbb{R}^1 = CH_3COS-$, $\mathbb{R}^2 = CH_3$

(M-17, 7) and/or in the synthesis of tritium-labeled¹² cyclosporin A. Acetylation of cyclosporin A leads to a complete loss of its immunosuppressive activity¹³, indicating that the introduction of acetyl group might influence the conformation of the cyclopeptide backbone. However, its ability to sensitize multidrug-resistant cells to chemotherapeutic agents is retained¹³. The aim of this paper is to evaluate the effect of acetylation and subsequent bromination of cyclosporin A on its conformation and hydrogen bonding in the solid state.

EXPERIMENTAL

Source of Materials

 $[O-Acetyl-MeBmt^{1}]CsA$ (1) and $[O-acetyl-\omega-bromo-MeBmt^{1}]CsA$ (2) were prepared by acetylation of cyclosporin A (99.5%, Galena, Czech Republic) with acetic anhydride and bromination of 1 with N-bromosuccinimide^{11,12}. Identification: FAB MS (Finnigan MAT 90, *m*-nitrobenzyl alcohol): 1 *m/z* 1 244.9 [M + H]⁺, 1 184.8 [MH - CH₂CO₂H]⁺; 2 [M + H]⁺ as a doublet m/z 1 322.8/1 324.8 (⁷⁹Br/⁸¹Br 1 : 1). For the comparison of conformations of 1 and 2 in the crystalline state and solution, so far unpublished full NMR assignment is provided for 2 (Varian VXR-400, 399.95 MHz for ¹H, 100.58 MHz for ¹³C, $CDCl_3$, 25 °C). Carbon signal multiplicity was determined by APT and DEPT. The 2D NMR experiments on which the reported assignments are based (COSY, delay-COSY, ROESY, HOM2DJ and HETCOR) were performed using the manufacturer's software: δ 0.795 (3 H, d, J = 6.5 Hz, H-6 δ_0); 0.807 (3 H, d, J = 6.8 Hz, H-5 γ_0 ; 0.849 (3 H, d, J = 6.7 Hz, H-11 γ_0); 0.853 (3 H, t, J = 7.4 Hz, H-2 γ); 0.855 $(3 \text{ H}, \text{ d}, J = 6.3 \text{ Hz}, \text{H-9}\delta_{n}); 0.885 (3 \text{ H}, \text{ d}, J = 6.8 \text{ Hz}, \text{H-11}\gamma_{d}); (3 \text{ H}, \text{ d}, J = 6.4 \text{ Hz}, \text{H-9}\delta_{d});$ 0.896 (3 H, d, J = 6.9 Hz, 1γ-Me); 0.951 (3 H, d, J = 6.6 Hz, H-10δ₁); 0.957 (3 H, d, J = 6.6 Hz, $H-10\delta_d$; 0.985 (3 H, d, J = 6.6 Hz, $H-4\delta_u$); 0.992 (3 H, d, J = 6.5 Hz, $H-6\delta_d$); 1.019 (3 H, d, J = 6.5 Hz, $H-6\delta$ 6.6 Hz, H-5 δ_d); 1.048 (3 H, d, J = 6.5 Hz, H-6 δ_d); 1.182 (1 H, m, H-10 β_u); 1.209 (1 H, m, $H-9\beta_{u}$; 1.263 (3 H, d, J = 6.8 Hz, $H-8\beta$); 1.311 (3 H, d, J = 7.2 Hz, $H-7\beta$); 1.333 (1 H, m, H-9 γ); 1.421 (1 H, m, H-10 γ); 1.449 (1 H, m, H-4 γ); 1.650 (1 H, m, H-4 $\beta_{\rm u}$); 1.667 (1 H, m, H-1δ_u); 1.690 (2 H, m, H-2β); 1.899 (1 H, m, H-6γ); 1.903 (1 H, m, H-1γ); 2.022 (3 H, s, Ac); 2.022 (1 H, m, H-4 β_d); 2.070 (1 H, m, H-10 β_d); 2.139 (1 H, m, H-9 β_d); 2.180 (1 H, m, H-1 δ_u); 2.219 (1 H, m, H-6 β_a); 2.418 (1 H, dqq, J = 9.0, 6.8, 6.6 Hz, H-5 β); 2.651 (3 H, s, 10-Me); 2.674 (3 H, s, 11-Me); 3.106 (3 H, s, 4-Me); 3.180 (1 H, d, J = 13.8 Hz, H-3 α_{u}); 3.208 (3 H, s, 9-Me); 3.255 (3 H, s, 6-Me); 3.263 (3 H, s, 3-Me); 3.453 (3 H, s, 1-Me); 3.894 (1 H, dd, J = 9.9, 7.8 Hz, H-1 ω_{u}); 3.938 (1 H, dd, J = 9.9, 8.0 Hz, H-1 ω_{d}); 4.412 (1 H, dq, J = 6.9, 7.2 Hz, H-7 α); 4.647 (1 H, d, J = 13.8 Hz, H-3 α _d); 4.738 (1 H, dd, J = 9.0, 9.0 Hz, H-5 α); 4.837 (1 H, dq, J = 7.6, 6.8 Hz, H-8 α); 4.952 (1 H, ddd, J = 9.7, 6.9, 6.9 Hz, H-2 α); 4.972 (1 H, d, J = 11.1 Hz, H-11α); 5.143 (1 H, dd, J = 8.5, 5.6 Hz, H-10α); 5.276 (1 H, dd, J = 7.0, 3.6 Hz, H-6α); 5.306 $(1 \text{ H}, \text{ dd}, J = 6.7, 3.8 \text{ Hz}, \text{H-}4\alpha); 5.464$ $(1 \text{ H}, \text{ ddd}, J = 15.2, 4.9, 4.8 \text{ Hz}, \text{H-}1\epsilon); 5.510$ $(1 \text{ H}, \text{ dd}, \text{H}, \text{H$ $J = 11.6, 1.0, H-1\beta$; 5.539 (1 H, d, J = 11.6 Hz, H-1 α); 5.572 (1 H, ddd, J = 15.2, 8.0, 7.8 Hz, H-1 η); 5.675 (1 H, dd, J = 11.1, 4.2 Hz, H-9 α), 7.429 (1 H, d, J = 7.6 Hz, 8-NH); 7.568 (1 H, d, J = 9.0 Hz, 5-NH); 8.022 (1 H, d, J = 6.9 Hz, 7-NH); 8.551 (1 H, d, J = 9.7 Hz, 2-NH).

¹³C NMR (100.58 MHz, CDCl₃, 25 °C): δ 9.88 q (C-2γ), 15.02 q (C-7β), 17.67 q (C1γ-Me), 17.90 q (C-8β), 18.08 q (C-5γ_u), 18.62 q (C-11γ_u), 19.69 q (C-5γ_d), 20.46 q (C-11γ_d), 20.7 + q

(Ac), 21.15 q (C-6 $_{u}$), 21.28 q (C-4 $_{u}$), 21.81 q (C-9 $_{u}$), 23.50 q (C-4 $_{d}$), 23.52 q (C-10 $_{u}$), 23.76 q (3 C, C-6 $_{d}$, C-9 $_{d}$, C-10 $_{d}$), 24.22 d (C-10 $_{\gamma}$), 24.50 d (C-4 $_{\gamma}$), 24.66 d (C-9 $_{\gamma}$), 24.75 d (C-6 $_{\gamma}$), 24.90 t (C-2 $_{\beta}$), 29.47 d (C-11 $_{\beta}$), 29.68 q (9-Me), 29.86 q (10-Me), 30.17 q (11-Me), 31.35 q (4-Me), 31.45 q (6-Me), 31.66 d (C-5 $_{\beta}$), 32.33 q (3-Me), 32.87 t (C-1 $_{\omega}$), 32.99 d (C-1 $_{\gamma}$), 33.64 t (C-1 $_{\delta}$), 35.93 t (C-4 $_{\beta}$), 37.14 t (C-6 $_{\beta}$), 39.23 t (C-9 $_{\beta}$), 39.29 q (1-Me), 40.98 t (C-10 $_{\beta}$), 44.68 d (C-8 $_{\alpha}$), 47.87 d (C-9 $_{\alpha}$), 48.24 d (C-7 $_{\alpha}$), 48.73 d (C-2 $_{\alpha}$), 50.02 t (C-3 $_{\alpha}$), 54.25 (C-6 $_{\alpha}$), 54.86 d (C-5 $_{\alpha}$), 55.28 d (C-4 $_{\alpha}$), 56.04 d (C-1 $_{\alpha}$), 57.29 d (C-10 $_{\alpha}$), 58.28 d (C-11 $_{\alpha}$), 72.97 d (C-1 $_{\beta}$), 128.49 d (C-1 $_{\eta}$), 134.12 d (C-1 $_{\varepsilon}$), 167.95 s (Ac C=O), 170.09 s, 170.33 s, 170.44 s, 170.77 s, 170.94 s, 171.19 s, 171.31 s, 172.78 s, 172.96 s, 173.45 s, 173.74 s (11 × C=O). Note: subscripts u and d denote the upfield and downfield resonating atom in diastereotopic pairs.

Crystal Structure Determination

Compounds 1 or 2 (1 g) were dissolved in acetone (5 ml) and heptane (50 ml) was added under vigorous stirring. The solution was allowed to stand in an open flask to slowly evaporate. Crystals were filtered off, washed with an acetone–heptane mixture (1 : 20, v/v), and dried in air.

Compound 1: $C_{64}H_{113}N_{11}O_{13}$; $M_r = 1$ 244.7, orthorhombic system, space group $P2_12_12_1$ (No. 19), a = 12.936(2) Å, b = 15.590(2) Å, c = 36.280(3) Å, Z = 4, V = 7 317(2) Å³, $D_{calc} = 1.130$ g cm⁻³, μ (CuK α) = 0.64 mm⁻¹, F(000) = 2 712. The structure was solved by direct methods and anisotropically refined by full-matrix least-squares. Hydrogen atoms were found from expected geometry and were not refined. Absorption was neglected. The absolute configuration was assigned based on that of cyclosporin A.

Compound 2: $C_{64}H_{112}BrN_{11}O_{13}$; $M_r = 1$ 323.6, orthorhombic system, space group $P2_12_12_1$ (No. 19), a = 12.926(3) Å, b = 15.675(4) Å, c = 36.715(7) Å, Z = 4, V = 7 433(3) Å³, $D_{calc} = 1.183$ g cm⁻³, $\mu(CuK\alpha) = 1.24$ mm⁻¹, F(000) = 2 848. The structure was solved by direct methods. The semi-empirical absorption correction based on ψ -scan of six reflections¹⁴ was applied. H-atoms were included in calculated positions. The C14 carbon (the terminal atom of Abu²) was found disordered over two positions with the same site-occupancy factors of 0.5. Its parameters for both positions were refined isotropically with restrained geometry. The positions of the remaining atoms were refined anisotropically by full-matrix least-squares. The large residual electron density and decrease of standard reflections indicated a possible presence of a water molecule in the structure, but it was impossible to interpret difference Fourier maxima in this way. Absolute configuration was determined using refinement of Flack's enantiopole parameter to final value of x = 0.11(4).

The complete X-ray data can be obtained from the fourth author upon request.

RESULTS AND DISCUSSION

Data collection and structure refinement parameters for compounds **1** and **2** are listed in Table I. Figure 2 shows ORTEP drawing of **1** and **2**. The crystal structures and the numbering of the peptide backbone are shown in Fig. 2. Both **1** and **2** crystallize in the orthorhombic space group $P2_12_12_1$ and exhibit a compact antiparallel β -sheet structure with four intramolecular hydrogen bonds involving NH groups, and the peptide bond between MeLeu⁹

and MeLeu¹⁰ in a *cis*-conformation (Fig. 1). The crystal structure determination of the title compounds has revealed that they are isostructural with cyclosporin A monohydrate^{1,2} (**3**) and [*S*-acetyl-MeBmt¹]CsA (**6**) (ref.¹⁵). Consequently, the molecular structure, backbone conformation as well as the conformation of side chains in **1–4** and **6** are very similar (for the backbone conformational angles see Table II). As implies from the comparison of structures, the conformation of the cyclosporin backbone is highly conserved and is not affected even by the introduction of the bulky substituents. In **3** the solvent water is hydrogen bonded to the hydroxy group of

Collect. Czech. Chem. Commun. (Vol. 64) (1999)

TABLE I

Data collection and structure refinement parameters for 1 and 2

Parameter	1	2
Crystal dimensions	$0.7\times0.6\times0.6~mm$	$0.8\times0.8\times0.1~\text{mm}$
Diffractometer and radia- tion used	Enraf–Nonius CAD4, CuK α , $\lambda = 1.5$	4187 Å
Scan technique	ω/2θ	ω/2θ
Temperature	293 K	293 K
No. and θ range of reflections for lattice parameter refinement	15; 48.82-49.80°	16; 15–50°
Range of h, k and l	$0{\rightarrow}15,\ 0{\rightarrow}18,\ -43{\rightarrow}0$	$0{\rightarrow}12,\ 0{\rightarrow}15,\ -36{\rightarrow}36$
Standard reflections moni- tored in interval; intensity fluctuation	120 min; -1.19%	60 min; -8.26%
Total number of reflections measured; $\boldsymbol{\theta}$ range	5 608; 2.44–67.0°	8 201; 0-60°
No. of observed independ- ent reflections	5 513	6 756
Criterion for observed re- flections	$I \ge 1.96\sigma(I)$	$I \ge 1.96\sigma(I)$
Function minimized	$\sum W (F_{o}^2 - F_{c}^2)^2$	$\sum W (F_{\rm o} - F_{\rm c})^2$
Weighting scheme	$\overline{W} = 1/[\sigma^2(F_o^2) + (0.0751P)^2 + 6.5518P, \text{ where } P = (F_o^2 + F_c^2)/3$	Chebychev polynomial ²¹
Parameters refined	795	802
Value of <i>R</i> , <i>wR</i> and <i>S</i>	0.076, 0.179, 1.13	0.094, 0.116, 1.14
Ratio of maximum least-squares shift to e.s.d. in the last cycle	0.001	0.001
Maximum and minimum heights in final $\Delta \rho$ map	0.42; -0.19 e Å ⁻³	1.34; -1.45 e Å ⁻³
Source of atomic scattering factors	ref. ¹⁷	ref. ¹⁷
Programs used	SDP ref. ¹⁸ , SIR92 ref. ¹⁹ , SHELX97 ref. ²⁰	SDP ref. ¹⁸ , CRYSTALS ref. ²¹ , PARST ref. ²² , SIR92 ref. ¹⁹

Cyclosporin Derivatives

	φ1	ψ_1	ω_1	φ_2	Ψ_2	ω_2	φ_3	Ψ_3	ω_3	ϕ_4	Ψ_4	ω_4	φ	Ψ_5	ω_5	φ_6	Ψ_6
[0-acetyl-MeBmt ¹]CsA 1	-99	105 -	-172 -	108	106 -	-176	63	-132	175	-105	33	179	-112	122	165	-88	107
$[0-acety]-\omega-bromoMeBmt^1]CsA 2$	-104	104 -	-173 -	106	107 -	-175	62	-133	176	-101	25	-179	-106	123	168	-92	104
[S-acetyl-MeBmt ¹]CsA 6 ^a (ref. ¹⁵)	-103	102 -	-169 -	107	105 -	-176	63	-133	176	-107	35	180	-114	120	167	-85	110
$CsA\cdot H_2O$ 3 ^a (ref. ²)	-100	103 -	-169 -	108	105 -	-175	99	-136	173	-105	33	177	-109	120	167	-87	105
CsA.2 $H_2O 4^a$ (ref. ³)	-84	122 -	-175 -	120	- 06	-177	71	-128	173	66-	22	-180	-113	125	167	-90	100
CsA \cdot dimethyl isosorbide 5^a (ref. ⁴)	-93	156	167 -	118	- 66	-167	68	-133	172	-98	6	-177	-85	134	176	-79	128
	0 ₆	φ	Ψ_7	ω_7	Φ ₈	Ψ	3	⁸	6	ψ ₉	0 ⁹	φ10	Ψ_{10}	ω_{10}	φ_{11}	Ψ_{11}	ω_{11}
[0-acety]-MeBmt ¹]CsA 1	-174	-87	53	18(8	1 -12	6 -1	73 -1	17 1	12 -	-12	134	64	-174	-98	122	177
$[0-acety] \infty$ -bromoMeBmt ¹]CsA 2	-172	-84	54	18(.8	2 -12	6 -1	73 –1	17 1	60	° °	138	65	-174	-97	124	180
$[S-acety]-MeBmt^1]CsA 6^a (ref.^{15})$	-173	-88	49	-18(8	3 -12	8 -1	74 –1	14 1	11	-10	136	68	-176	-102	125	-180
$CsA·H_2O$ 3 ^a (ref. ²)	-173	-86	52	-18(,8 (-12	7 -1	69 -1	20 1	00	ŝ	.146	. 99	-176	-98	122	178
CsA.2 H_2O 4 ^a (ref. ³)	-165	-83	52	178	õ	3 -12	5 -1	67 -1	19 1	00	9-	139	65	-167	-103	125	173
CsA-dimethyl isosorbide 5^{a} (ref. ⁴)	-174	-98	-2	18() 15(-13	3 -1	73 -1	20	66	- -	139	64	-178	-95	142	166
^a Data for 3, 4 and 6 are from C	Cambrie	dge S	tructu	ral Da	tabas	e (Cs,	A·H ₂ C), KEP	NAU	CsA.	2 H ₂ C), DEH	(SAN;	[S-ac	etyl-N	[eBmt ¹]CsA,

A comparison of cyclosporin solid state conformations of compounds 1-6

TABLE II

ZAJDUJ).

^{MeBmt. In} **1**, **2** and **6** the same position is occupied by an acetyl group giving further argument for isostructurality of all these compounds.

However, the side chain conformation of MeBmt residue is changed. An increase in $J(\alpha,\beta)$ from 6.1 Hz in CsA to 11.6 Hz in 1 indicates an antiperiplanar arrangement, $J(\beta,\gamma)$ decreases from 5.5 to 1.0 Hz. Only few most intense crosspeaks observed in ROESY spectra at room temperature (corresponding to geminal, vicinal sequential and some others – H-9 α vs H-10 α , 2-NH vs H-1 β) are insufficient for a detailed analysis.

TABLE III Hydrogen bonds for **1** and **2**

		1			9	
		1			~	
Bonds	H…A Å	D…A Å	D−H…A °	H…A Å	D…A Å	D−H···A °
Abu ² (NH)…Val ⁵ (CO)	2.10	2.934(7)	163.2	1.99	2.939(9)	158.0
Val ³ (NH)····MeLeu ⁴ (N)	2.21	2.753(7)	120.6	2.37	2.755(9)	102.1
Val ³ (NH)…Abu ² (CO)	2.22	2.979(7)	146.2	2.01	2.974(9)	160.6
Ala ⁷ (NH)····MeVal ¹¹ (CO)	2.14	2.991(7)	168.5	2.04	3.024(8)	166.0
D-Ala ⁸ (NH)…MeLeu ⁶ (CO)	2.31	2.934(8)	133.0	1.99	2.893(8)	148.3

TABLE IV

Comparison of volumes for potential solvent 23 in cyclosporins 1–5 (solvent molecules excluded from the calculations)

Compound	Total solvent area in unit cell, Å ³	Total solvent area in unit cell/V	Maximal continuous sol- vent area, Å ³
[O-acetyl-MeBMT ¹]CsA 1	81.7	0.01	13
$[O-acetyl-\omega-bromo-MeBmt^1]CsA$ 2	177.5	0.04	27
$CsA \cdot H_2O$ 3 (ref. ²)	144.5	0.02	27
$CsA \cdot H_2O$ 4 (ref. ³)	875.6	0.21	332
CsA·DMI 5 (ref. ⁴)	1 326.2	0.16	438

The only difference we have found is concerned to the hydrogen bonding in solid **1**. The molecule of cyclosporin with 11 carbonyl oxygen atoms and only one OH and four NH groups is a typical example of the H-deficient compounds. In such systems the tendency to the formation of three-center (bifurcated) hydrogen bonds might be expected¹⁶. So far, the bifurcated H-bonds of D-Ala⁸ (NH) to D-Ala⁸ (CO) and MeLeu⁶ (CO) have been observed in the structure of CsA in the nonpolar solvents³. Compound **1** is the first example of solid state conformation of cyclosporin with clear three-center hydrogen bonds from Val⁵ (NH) to MeLeu⁴ (CO) and Abu² (CO) (hydrogen bonding parameters are presented in Table III).

A comparison of the space available for solvent molecules in different cyclosporin modifications is made in Table IV. From the maximal continuous space aviable for solvent it shoud be deduced that the $P2_12_12_1$ packing in **1**, **2** and **3** is not suitable for incorporating solvent molecules in the structure in contradistinction to packing of **4** and **5**.

This work was supported by the Grant Agency of the Czech Republic (grants No. 203/97/0623, No. 203/99/0067 and No. 203/97/P045).

REFERENCES

- 1. Knott R. B., Schefer J., Schoenborn B. P.: Mater. Sci. Forum 1988, 27/28, 151.
- Knott R. B., Schefer J., Schoenborn B. P.: Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1990, 46, 1528.
- 3. Loosli H. R., Kessler H., Oschkinat H., Weber H. P., Petcher T. J., Widmer A.: *Helv. Chim.* Acta **1985**, 68, 682.
- Hušák M., Kratochvíl B., Jegorov A., Maťha V., Stuchlík M., Andrýsek T.: Z. Kristallogr. 1996, 211, 313.
- 5. Kessler H., Köck M., Wein T., Gerke M.: Helv. Chim. Acta 1990, 73, 1818.
- 6. Seebach D., Ko S. Y., Kessler H., Köck M., Reggelin M., Schmieder P., Walkinshaw M. D., Bölsterli J. J., Bevec D.: *Helv. Chim. Acta* **1991**, *74*, 1953.
- 7. Kessler H., Loosli H.-R., Oschkinat H.: Helv. Chim. Acta 1985, 68, 661.
- Pflügl G., Kallen J., Schrimer T., Jansonius J. N., Zurini M. G. M., Walkinshaw M. D.: Nature 1993, 361, 91.
- 9. Mikol V., Kallen J., Pflügl G., Walkinshaw M. D.: J. Mol. Biol. 1993, 234, 1119.
- 10. Köck M., Kessler H., Seebach D., Thaler A.: J. Am. Chem. Soc. 1992, 114, 2676.
- 11. Eberle M. K., Nuninger F.: J. Org. Chem. 1992, 57, 2689.
- Černý B., Jegorov A., Polívková J., Sedmera P., Havlíček V.: J. Labelled Compd. Radiopharm. 1998, 41, 267.
- 13. Gavériaux C., Boesch D., Boelsterli J. J., Bollinger P., Eberle M. K., Hiestand P., Payne T., Traber R., Wenger R., Loor F.: *Br. J. Cancer* **1989**, *60*, 867.
- 14. North A. C. T., Phillips D. C., Mathews F. S.: Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1968, 24, 351.

- 15. Eberle M. E., Nuninger F., Weber H.-P.: J. Org. Chem. 1995, 60, 2610.
- 16. Taylor R., Kennard O., Versichel W.: J. Am. Chem. Soc. 1984, 106, 244.
- 17. International Tables for X-Ray Crystallography, Vol. IV. Kynoch Press, Birmingham 1974.
- 18. Frenz B. A. and Associated, Inc.: *SDP. Structure Determination Package*. Enraf–Nonius, Delf 1985.
- Altomare A., Burla M. C., Camalli M., Cascarano G., Giaccovazzo C., Guagliardi A., Polidori G.: J. Appl. Crystallogr. 1994, 27, 435.
- 20. Sheldrick G. M.: SHELX97. Program for Crystal Structure Determination. University of Göttingen, Göttingen 1997.
- 21. Watkin D. J.: CRYSTALS. Crystallographic Package. University of Oxford, Oxford 1989.
- 22. Nardelli M.: PARST. System of Computer Routines for Calculating Molecular Parameters from the Results of Crystal Structure. University of Parma, Parma 1991.
- 23. Vandersluis P., Spek A. L.: Acta Crystallogr., Sect. A: Fundam. Crystallogr. 1990, 46, 194.